
Introduction to Computers for
Engineers:

Recitation #6

Learning Objectives

u Understand the format of a 2D Matrix (aka 2D Array) in MATLAB

u Understand how to index rows and columns

u Understand how to use nested loops to help you index rows and
columns

u Continue to develop an understanding of loops

Question 1: Function called “test”
u function [my_output] = test(my_input)

u [output] = test(input)

(A)

u function (my_output) = test[my_input]

u [output] = test(input)

(B)

u function (my_output) = test[my_input]

u test(input)

(C)

u function [test] = my_output(my_input)

u [output] = test(input)

(D)

Question 2: Looping arrays

u for i=1:length(array)

u if array(i) > 0

u disp(‘hello’)

(C)

u for i=1:array

u if array(i) > 0

u disp(‘hello’)

(B)

u for i=1:length(array)

u if array > 0

u disp(‘hello’)

(A)

u for i=1:array

u if array > 0

u disp(‘hello’)

(D)

Activity 1: Matrices in MATLAB

u The objective of this activity is to introduce how to create matrices
(2D arrays) in MATLAB

u 1. Choose a basic geometric shape
uDraw it on the whiteboard

u 2. Think about how you would create that shape with numerical
elements in a 6 row x 6 column matrix (2D array)
u1’s represent the shape, 0’s represent the background
uDraw this matrix on the whiteboard

u 3. Write code that creates this matrix in MATLAB

u 4. Once the matrix is stored as a variable, write the command
imagesc(variable), where “variable” is the name of your variable to
see a visualization of your shape

Loops and Arrays

i
2 5 6 2 5 9 0 3 2 4 5 6 7 3 4 6 8 9 0 4

Loops

myArray = theNumbersBelow;
for i = 1:1:length(myArray);

myArray(i) = myArray(i);
end

Loops and Arrays

2 5 6 2 5 9 0 3 2 4 5 6 7 3 4 6 8 9 0 4

5 3 7 2 5 9 1 3 2 4 0 6 4 3 3 6 0 9 7 5

1 1 6 9 9 3 0 4 3 5 5 2 7 5 4 9 8 2 0 4

i
i

myMatrix = theNumbersBelow;
[rows, cols] = size(myMatrix);
for i = 1:1:rows

for j = 1:1:cols
myMatrix(i,j) = myMatrix(i,j);

end
end

ij

Activity 2: Nested Loops
u Write a function called matrixSum with one input variable my_matrix and output variable matrix_sum

u my_matrix: matrix (2D array)
u matrix_sum: double

u We want this function to take the sum of all of the elements in our input matrix.

u Procedure

1. Write a line of code that determines the number of rows and columns in your matrix
u [rows, cols] = size(matrix);

2. Set up nested loops to count through indices of your matrix (i.e. every combination of row and
column indices that exists)

3. Before your loops create a variable that will store the sum of every number in your matrix

4. Inside of your loops add value of the element at the current index to the current value of your
sum variable

u Discuss and write test cases and test your function

u Come up with at least 2 different test matrices

Activity 2: Solution

Activity 3: Loops and Conditional
Statements

u The objective of this activity is to get used to putting conditional statements
inside of loops

u Write a function called primeSum with one input variable my_matrix and output
variable prime_sum
u my_matrix: matrix (2D array)
u prime_sum: double

u Instead of taking the sum of every element in your matrix, we only want to take
the sum of prime numbers of the matrix

u You can use the built-in function isprime to help you
u isprime(number) returns false if number is not prime and true if the number

is prime

u Discuss and test your code with different test cases.

Activity 3: Solution

